Abstract
Identifying host factors that influence infectious disease transmission is an important step toward developing interventions to reduce disease incidence. Recent advances in methods for reconstructing infectious disease transmission events using pathogen genomic and epidemiological data open the door for investigation of host factors that affect onward transmission. While most transmission reconstruction methods are designed to work with densely sampled outbreaks, these methods are making their way into surveillance studies, where the fraction of sampled cases with sequenced pathogens could be relatively low. Surveillance studies that use transmission event reconstruction then use the reconstructed events as response variables (i.e., infection source status of each sampled case) and use host characteristics as predictors (e.g., presence of HIV infection) in regression models. We use simulations to study estimation of the effect of a host factor on probability of being an infection source via this multi-step inferential procedure. Using TransPhylo—a widely-used method for Bayesian estimation of infectious disease transmission events—and logistic regression, we find that low sensitivity of identifying infection sources leads to dilution of the signal, biasing logistic regression coefficients toward zero. We show that increasing the proportion of sampled cases improves sensitivity and some, but not all properties of the logistic regression inference. Application of these approaches to real world data from a population-based TB study in Botswana fails to detect an association between HIV infection and probability of being a TB infection source. We conclude that application of a pipeline, where one first uses TransPhylo and sparsely sampled surveillance data to infer transmission events and then estimates effects of host characteristics on probabilities of these events, should be accompanied by a realistic simulation study to better understand biases stemming from imprecise transmission event inference.
Funder
National Institute of Allergy and Infectious Diseases
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference32 articles.
1. Advances in the understanding of Mycobacterium tuberculosis transmission in HIV-endemic settings;JS Peters;The Lancet Infectious diseases,2019
2. HIV infection and the transmission of tuberculosis;TA Yates;J Infect Dis,2015
3. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak;JL Gardy;New England Journal of Medicine,2011
4. Using genomics data to reconstruct transmission trees during disease outbreaks;M Hall;Revue scientifique et technique (International Office of Epizootics),2016
5. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks;X Didelot;Molecular Biology and Evolution,2017
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献