Personalized prediction for multiple chronic diseases by developing the multi-task Cox learning model

Author:

Zhang Shuaijie,Yang FanORCID,Wang Lijie,Si Shucheng,Zhang Jianmei,Xue FuzhongORCID

Abstract

Personalized prediction of chronic diseases is crucial for reducing the disease burden. However, previous studies on chronic diseases have not adequately considered the relationship between chronic diseases. To explore the patient-wise risk of multiple chronic diseases, we developed a multitask learning Cox (MTL-Cox) model for personalized prediction of nine typical chronic diseases on the UK Biobank dataset. MTL-Cox employs a multitask learning framework to train semiparametric multivariable Cox models. To comprehensively estimate the performance of the MTL-Cox model, we measured it via five commonly used survival analysis metrics: concordance index, area under the curve (AUC), specificity, sensitivity, and Youden index. In addition, we verified the validity of the MTL-Cox model framework in the Weihai physical examination dataset, from Shandong province, China. The MTL-Cox model achieved a statistically significant (p<0.05) improvement in results compared with competing methods in the evaluation metrics of the concordance index, AUC, sensitivity, and Youden index using the paired-sample Wilcoxon signed-rank test. In particular, the MTL-Cox model improved prediction accuracy by up to 12% compared to other models. We also applied the MTL-Cox model to rank the absolute risk of nine chronic diseases in patients on the UK Biobank dataset. This was the first known study to use the multitask learning-based Cox model to predict the personalized risk of the nine chronic diseases. The study can contribute to early screening, personalized risk ranking, and diagnosing of chronic diseases.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. Prevention of chronic diseases: a call to action;R Beaglehole;The Lancet,2007

2. The burden and costs of chronic diseases in low-income and middle-income countries;DO Abegunde;The Lancet,2007

3. Chronic non-communicable diseases;N Unwin;Annals of Tropical Medicine & Parasitology,2006

4. Impact of overweight on the risk of developing common chronic diseases during a 10-year period;AE Field;Archives of internal medicine,2001

5. Lack of exercise is a major cause of chronic diseases;FW Booth;Comprehensive physiology,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer-Based Joint Classification Network for Diabetic Retinopathy and Diabetic Macular Edema;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3