Abstract
Reliable detection and classification of bacteria and other pathogens in the human body, animals, food, and water is crucial for improving and safeguarding public health. For instance, identifying the species and its antibiotic susceptibility is vital for effective bacterial infection treatment. Here we show that phase contrast time-lapse microscopy combined with deep learning is sufficient to classify four species of bacteria relevant to human health. The classification is performed on living bacteria and does not require fixation or staining, meaning that the bacterial species can be determined as the bacteria reproduce in a microfluidic device, enabling parallel determination of susceptibility to antibiotics. We assess the performance of convolutional neural networks and vision transformers, where the best model attained a class-average accuracy exceeding 98%. Our successful proof-of-principle results suggest that the methods should be challenged with data covering more species and clinically relevant isolates for future clinical use.
Funder
Stiftelsen för Strategisk Forskning
the Swedish Research Council
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献