Impacts of observation frequency on proximity contact data and modeled transmission dynamics

Author:

Qian WeichengORCID,Stanley Kevin Gordon,Osgood Nathaniel David

Abstract

Transmission of many communicable diseases depends on proximity contacts among humans. Modeling the dynamics of proximity contacts can help determine whether an outbreak is likely to trigger an epidemic. While the advent of commodity mobile devices has eased the collection of proximity contact data, battery capacity and associated costs impose tradeoffs between the observation frequency and scanning duration used for contact detection. The choice of observation frequency should depend on the characteristics of a particular pathogen and accompanying disease. We downsampled data from five contact network studies, each measuring participant-participant contact every 5 minutes for durations of four or more weeks. These studies included a total of 284 participants and exhibited different community structures. We found that for epidemiological models employing high-resolution proximity data, both the observation method and observation frequency configured to collect proximity data impact the simulation results. This impact is subject to the population’s characteristics as well as pathogen infectiousness. By comparing the performance of two observation methods, we found that in most cases, half-hourly Bluetooth discovery for one minute can collect proximity data that allows agent-based transmission models to produce a reasonable estimation of the attack rate, but more frequent Bluetooth discovery is preferred to model individual infection risks or for highly transmissible pathogens. Our findings inform the empirical basis for guidelines to inform data collection that is both efficient and effective.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference100 articles.

1. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 70; 2020. Online. Available from: https://apps.who.int/iris/handle/10665/331683.

2. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 72; 2020. Online. Available from: https://apps.who.int/iris/handle/10665/331685.

3. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 85; 2020. Online. Available from: https://www.who.int/publications/m/item/situation-report---85.

4. The outbreak of COVID-19: An overview;YC Wu;Journal of the Chinese Medical Association,2020

5. World Health Organization. Latest updates on the Ebola outbreak; 2017. Available from: http://www.who.int/csr/disease/ebola/top-stories-2016/en/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3