BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach

Author:

Kalemati Mahmood,Zamani Emani Mojtaba,Koohi SomayyehORCID

Abstract

Drug-target binding affinity prediction plays a key role in the early stage of drug discovery. Numerous experimental and data-driven approaches have been developed for predicting drug-target binding affinity. However, experimental methods highly rely on the limited structural-related information from drug-target pairs, domain knowledge, and time-consuming assays. On the other hand, learning-based methods have shown an acceptable prediction performance. However, most of them utilize several simple and complex types of proteins and drug compounds data, ranging from the protein sequences to the topology of a graph representation of drug compounds, employing multiple deep neural networks for encoding and feature extraction, and so, leads to the computational overheads. In this study, we propose a unified measure for protein sequence encoding, named BiComp, which provides compression-based and evolutionary-related features from the protein sequences. Specifically, we employ Normalized Compression Distance and Smith-Waterman measures for capturing complementary information from the algorithmic information theory and biological domains, respectively. We utilize the proposed measure to encode the input proteins feeding a new deep neural network-based method for drug-target binding affinity prediction, named BiComp-DTA. BiComp-DTA is evaluated utilizing four benchmark datasets for drug-target binding affinity prediction. Compared to the state-of-the-art methods, which employ complex models for protein encoding and feature extraction, BiComp-DTA provides superior efficiency in terms of accuracy, runtime, and the number of trainable parameters. The latter achievement facilitates execution of BiComp-DTA on a normal desktop computer in a fast fashion. As a comparative study, we evaluate BiComp’s efficiency against its components for drug-target binding affinity prediction. The results have shown superior accuracy of BiComp due to the orthogonality and complementary nature of Smith-Waterman and Normalized Compression Distance measures for protein sequences. Such a protein sequence encoding provides efficient representation with no need for multiple sources of information, deep domain knowledge, and complex neural networks.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Drug–target interaction prediction: databases, web servers and computational models;X Chen;Briefings in bioinformatics,2016

2. Isothermal titration calorimetry of protein–protein interactions.;MM Pierce;Methods.,1999

3. Fluorescence polarization assays in small molecule screening.;WA Lea;Expert opinion on drug discovery.,2011

4. Surface plasmon resonance sensors.;J Homola;Sensors and actuators B: Chemical,1999

5. A systematic approach to quantitative Western blot analysis;L Pillai-Kastoori;Analytical biochemistry,2020

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3