Distinguishing between different percolation regimes in noisy dynamic networks with an application to epileptic seizures

Author:

Zhu XiaojingORCID,Shappell Heather,Kramer Mark A.,Chu Catherine J.,Kolaczyk Eric D.ORCID

Abstract

In clinical neuroscience, epileptic seizures have been associated with the sudden emergence of coupled activity across the brain. The resulting functional networks—in which edges indicate strong enough coupling between brain regions—are consistent with the notion of percolation, which is a phenomenon in complex networks corresponding to the sudden emergence of a giant connected component. Traditionally, work has concentrated on noise-free percolation with a monotonic process of network growth, but real-world networks are more complex. We develop a class of random graph hidden Markov models (RG-HMMs) for characterizing percolation regimes in noisy, dynamically evolving networks in the presence of edge birth and edge death. This class is used to understand the type of phase transitions undergone in a seizure, and in particular, distinguishing between different percolation regimes in epileptic seizures. We develop a hypothesis testing framework for inferring putative percolation mechanisms. As a necessary precursor, we present an EM algorithm for estimating parameters from a sequence of noisy networks only observed at a longitudinal subsampling of time points. Our results suggest that different types of percolation can occur in human seizures. The type inferred may suggest tailored treatment strategies and provide new insights into the fundamental science of epilepsy.

Funder

Army Research Office

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3