Optimizing clinical dosing of combination broadly neutralizing antibodies for HIV prevention

Author:

Mayer Bryan T.ORCID,deCamp Allan C.ORCID,Huang YundaORCID,Schiffer Joshua T.ORCID,Gottardo RaphaelORCID,Gilbert Peter B.,Reeves Daniel B.ORCID

Abstract

Broadly neutralizing antibodies (bNAbs) are promising agents to prevent HIV infection and achieve HIV remission without antiretroviral therapy (ART). As with ART, bNAb combinations are likely needed to cover HIV’s extensive diversity. Not all bNAbs are identical in terms of their breadth, potency, andin vivolongevity (half-life). Given these differences, it is important to optimally select the composition, or dose ratio, of combination bNAb therapies for future clinical studies. We developed a model that synthesizes 1) pharmacokinetics, 2) potency against a wide HIV diversity, 3) interaction models for how drugs work together, and 4) correlates that translatein vitropotency to clinical protection. We found optimization requires drug-specific balances between potency, longevity, and interaction type. As an example, tradeoffs between longevity and potency are shown by comparing a combination therapy to a bi-specific antibody (a single protein merging both bNAbs) that takes the better potency but the worse longevity of the two components. Then, we illustrate a realistic dose ratio optimization of a triple combination of VRC07, 3BNC117, and 10–1074 bNAbs. We apply protection estimates derived from both a non-human primate (NHP) challenge study meta-analysis and the human antibody mediated prevention (AMP) trials. In both cases, we find a 2:1:1 dose emphasizing VRC07 is nearly optimal. Our approach can be immediately applied to optimize the next generation of combination antibody prevention and cure studies.

Funder

National Institute of Allergy and Infectious Diseases

Bill and Melinda Gates Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention;KE Stephenson;Annu Rev Immunol,2020

2. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies;F Gao;Cell [Internet].,2014

3. Manipulating the Selection Forces during Affinity Maturation to Generate Cross-Reactive HIV Antibodies;S Wang;Cell [Internet].,2015

4. Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials.;PB Gilbert;Stat Commun Infect Dis [Internet].,2017

5. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition;L Corey;N Engl J Med [Internet].,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3