Remeshing flexible membranes under the control of free energy

Author:

Wang XinxinORCID,Danuser GaudenzORCID

Abstract

Cell membranes are flexible and often undergo large-scale morphological changes during processes like mitosis, protrusion and retraction, or vesicle fusion. Mathematical modeling of cell membranes depends on a representation of the free-form surface by discrete meshes. During morphological changes, these meshes must be adjusted under the minimization of the total free energy. Current methodology for meshing is limited in one of two ways: 1) Free energy-dependent methods have no restriction on the mesh geometry. The resulting irregular meshes cause artifacts in follow-up models of morphodynamics. 2) Geometry-dependent methods maintain mesh quality but violate the physics of free energy minimization. To fill this gap, we regulate mesh geometries via a free-energy-determined remeshing process: adding and removing mesh elements upon morphological changes based on barrier crossings in a double-barrier potential between neighboring vertices in the meshes. We test the method’s robustness by reproducing the morphodynamics of red blood cells and vesicle fusions; and we demonstrate the method’s adaptability by simulating the formation of filopodia, lamellipodia and invaginations. Finally, we use the method to study a mechanical decoupling effect of two connected membrane tethers that has been recently observed experimentally, but has not been mechanistically explained in the context of a complete membrane surface. We propose a biophysical model that strengthens the decoupling effect and broadens the original interpretation of the experiment. The method is developed in C/Matlab and distributed via https://github.com/DanuserLab/biophysicsModels.

Funder

NIH

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Mechanical induction and competence in epithelial morphogenesis;A Villedieu;Current opinion in genetics & development,2020

2. Of cell shapes and motion: the physical basis of animal cell migration;DL Bodor;Developmental cell,2020

3. Membrane and organelle dynamics during cell division;JG Carlton;Nature Reviews Molecular Cell Biology,2020

4. Pay attention to membrane tension: mechanobiology of the cell surface;E Sitarska;Current opinion in cell biology,2020

5. Robust and automated detection of subcellular morphological motifs in 3D microscopy images;MK Driscoll;Nature methods,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3