ATRPred: A machine learning based tool for clinical decision making of anti-TNF treatment in rheumatoid arthritis patients

Author:

Prasad BodhayanORCID,McGeough CathyORCID,Eakin AmandaORCID,Ahmed Tan,Small Dawn,Gardiner Philip,Pendleton AdrianORCID,Wright Gary,Bjourson Anthony J.ORCID,Gibson David S.ORCID,Shukla PriyankORCID

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune condition, characterised by joint pain, damage and disability, which can be addressed in a high proportion of patients by timely use of targeted biologic treatments. However, the patients, non-responsive to the treatments often suffer from refractoriness of the disease, leading to poor quality of life. Additionally, the biologic treatments are expensive. We obtained plasma samples from N = 144 participants with RA, who were about to commence anti-tumour necrosis factor (anti-TNF) therapy. These samples were sent to Olink Proteomics, Uppsala, Sweden, where proximity extension assays of 4 panels, containing 92 proteins each, were performed. A total of n = 89 samples of patients passed the quality control of anti-TNF treatment response data. The preliminary analysis of plasma protein expression values suggested that the RA population could be divided into two distinct molecular sub-groups (endotypes). However, these broad groups did not predict response to anti-TNF treatment, but were significantly different in terms of gender and their disease activity. We then labelled these patients as responders (n = 60) and non-responders (n = 29) based on the change in disease activity score (DAS) after 6 months of anti-TNF treatment and applied machine learning (ML) with a rigorous 5-fold nested cross-validation scheme to filter 17 proteins that were significantly associated with the treatment response. We have developed a ML based classifier ATRPred (anti-TNF treatment response predictor), which can predict anti-TNF treatment response in RA patients with 81% accuracy, 75% sensitivity and 86% specificity. ATRPred may aid clinicians to direct anti-TNF therapy to patients most likely to receive benefit, thus save cost as well as prevent non-responsive patients from refractory consequences. ATRPred is implemented in R.

Funder

Vice-Chancellor’s Research Scholarship (VCRS), Ulster University

European Union Regional Development Fund

EU Sustainable Competitiveness Programme for Northern Ireland & the Northern Ireland Public Health Agency

Ulster University

Innovate UK NxNW ICURe programme

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. Rheumatoid arthritis.;JS Smolen;Nat Rev Dis Primers,2018

2. Treatment of rheumatoid arthritis with tumour necrosis factor inhibitors;D Mewar;Br J Pharmacol,2011

3. Loss of response to anti-TNFs: definition, epidemiology, and management.;G Roda;Clin Transl Gastroenterol,2016

4. Common characteristics in RA patients who don’t respond to biologics;V. Caceres;The Rheumatologist.,2019

5. Cytokines in rheumatoid arthritis—shaping the immunological landscape.;IB McInnes;Nat Rev Rheumatol,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3