ECD-CDGI: An efficient energy-constrained diffusion model for cancer driver gene identification

Author:

Wang Tao,Zhuo LinlinORCID,Chen Yifan,Fu Xiangzheng,Zeng Xiangxiang,Zou QuanORCID

Abstract

The identification of cancer driver genes (CDGs) poses challenges due to the intricate interdependencies among genes and the influence of measurement errors and noise. We propose a novel energy-constrained diffusion (ECD)-based model for identifying CDGs, termed ECD-CDGI. This model is the first to design an ECD-Attention encoder by combining the ECD technique with an attention mechanism. ECD-Attention encoder excels at generating robust gene representations that reveal the complex interdependencies among genes while reducing the impact of data noise. We concatenate topological embedding extracted from gene-gene networks through graph transformers to these gene representations. We conduct extensive experiments across three testing scenarios. Extensive experiments show that the ECD-CDGI model possesses the ability to not only be proficient in identifying known CDGs but also efficiently uncover unknown potential CDGs. Furthermore, compared to the GNN-based approach, the ECD-CDGI model exhibits fewer constraints by existing gene-gene networks, thereby enhancing its capability to identify CDGs. Additionally, ECD-CDGI is open-source and freely available. We have also launched the model as a complimentary online tool specifically crafted to expedite research efforts focused on CDGs identification.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3