Rhythmicity is linked to expression cost at the protein level but to expression precision at the mRNA level

Author:

Laloum DavidORCID,Robinson-Rechavi MarcORCID

Abstract

Many genes have nycthemeral rhythms of expression, i.e. a 24-hours periodic variation, at either mRNA or protein level or both, and most rhythmic genes are tissue-specific. Here, we investigate and discuss the evolutionary origins of rhythms in gene expression. Our results suggest that rhythmicity of protein expression could have been favored by selection to minimize costs. Trends are consistent in bacteria, plants and animals, and are also supported by tissue-specific patterns in mouse. Unlike for protein level, cost cannot explain rhythm at the RNA level. We suggest that instead it allows to periodically reduce expression noise. Noise control had the strongest support in mouse, with limited evidence in other species. We have also found that genes under stronger purifying selection are rhythmically expressed at the mRNA level, and we propose that this is because they are noise sensitive genes. Finally, the adaptive role of rhythmic expression is supported by rhythmic genes being highly expressed yet tissue-specific. This provides a good evolutionary explanation for the observation that nycthemeral rhythms are often tissue-specific.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference60 articles.

1. Melanopsin-dependent direct photic effects are equal to clock-driven effects in shaping the nychthemeral sleep-wake cycle;J Hubbard;bioRxiv,2020

2. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues;SH Yoo;Proceedings of the National Academy of Sciences,2004

3. Integration of Light and Temperature in the Regulation of Circadian Gene Expression in Drosophila;CE Boothroyd;PLOS Genetics,2007

4. Circadian Gene Expression in Individual Fibroblasts: Cell-Autonomous and Self-Sustained Oscillators Pass Time to Daughter Cells;E Nagoshi;Cell,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3