Feasibility of ultrasound radiomics based models for classification of liver fibrosis due to Schistosoma japonicum infection

Author:

Guo ZhaoyuORCID,Zhao Miaomiao,Liu Zhenhua,Zheng Jinxin,Gong Yanfeng,Huang Lulu,Xue Jingbo,Zhou Xiaonong,Li ShizhuORCID

Abstract

Background Schistosomiasis japonica represents a significant public health concern in South Asia. There is an urgent need to optimize existing schistosomiasis diagnostic techniques. This study aims to develop models for the different stages of liver fibrosis caused by Schistosoma infection utilizing ultrasound radiomics and machine learning techniques. Methods From 2018 to 2022, we retrospectively collected data on 1,531 patients and 5,671 B-mode ultrasound images from the Second People’s Hospital of Duchang City, Jiangxi Province, China. The datasets were screened based on inclusion and exclusion criteria suitable for radiomics models. Liver fibrosis due to Schistosoma infection (LFSI) was categorized into four stages: grade 0, grade 1, grade 2, and grade 3. The data were divided into six binary classification problems, such as group 1 (grade 0 vs. grade 1) and group 2 (grade 0 vs. grade 2). Key radiomic features were extracted using Pyradiomics, the Mann-Whitney U test, and the Least Absolute Shrinkage and Selection Operator (LASSO). Machine learning models were constructed using Support Vector Machine (SVM), and the contribution of different features in the model was described by applying Shapley Additive Explanations (SHAP). Results This study ultimately included 1,388 patients and their corresponding images. A total of 851 radiomics features were extracted for each binary classification problems. Following feature selection, 18 to 76 features were retained from each groups. The area under the receiver operating characteristic curve (AUC) for the validation cohorts was 0.834 (95% CI: 0.779–0.885) for the LFSI grade 0 vs. LFSI grade 1, 0.771 (95% CI: 0.713–0.835) for LFSI grade 1 vs. LFSI grade 2, and 0.830 (95% CI: 0.762–0.885) for LFSI grade 2 vs. LFSI grade 3. Conclusion Machine learning models based on ultrasound radiomics are feasible for classifying different stages of liver fibrosis caused by Schistosoma infection.

Publisher

Public Library of Science (PLoS)

Reference49 articles.

1. Schistosomiasis—Assessing Progress toward the 2020 and 2025 Global Goals;AK Deol;N Engl J Med,2019

2. Defining schistosomiasis hotspots based on literature and shareholder interviews;RM Lim;Trends Parasitol,2023

3. Human schistosomiasis.;DG Colley;The Lancet,2014

4. Schistosomiasis: Life Cycle, Diagnosis, and Control.;ML Nelwan;Curr Ther Res,2019

5. The WHO new guideline to control and eliminate human schistosomiasis: implications for the verification of transmission interruption and surveillance of Schistosoma japonicum in China.;J Xu;Infect Dis Poverty,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3