Development of sandwich ELISA and lateral flow assay for the detection of Bungarus multicinctus venom

Author:

Nong Ji-FeiORCID,Huang Zhou,Huang Zheng-Zhuang,Yang Jie,Li Jin-Cheng,Yang Feng,Huang Dong-Ling,Wang Fan,Wang WeiORCID

Abstract

Snakebite envenoming adversely affects human health and life worldwide. Presently, no suitable diagnostic tools for snakebite envenoming are available in China. Therefore, we sought to develop reliable diagnostic tests for snakebite management. We conducted affinity purification experiments to prepare species-specific antivenom antibody (SSAb). In brief, affinity chromatography with an antibody purification column (Protein A) was conducted to purify immunoglobulin G from Bungarus multicinctus (BM) venom hyperimmunized rabbit serum. The cross-reactive antibodies were removed from commercial BM antivenin by immune adsorption on the affinity chromatography columns of the other three venoms, Bungarus Fasciatus (FS), Naja atra (NA), and O. hannah (OH), generating SSAb. The results of western blot analysis and enzyme-linked immunosorbent assay (ELISA) showed the high specificity of the prepared SSAb. The obtained antibodies were then applied to ELISA and lateral flow assay (LFA) to detect BM venom. The resulting ELISA and LFA could specifically and rapidly detect BM venom in various samples with the limits of quantification as 0.1 and 1 ng/ml, respectively. This method could effectively detect snake venom in experimentally envenomed rats (simulating human envenomation), which could distinguish positive and negative samples within 10–15 min. This method also showed promise in serving as a highly useful tool for a rapid clinical distinguishing of BM bites and rational use of antivenom in emergency centers. The study also revealed cross-reactivity between BM and heterogenous venoms, suggesting that they shared common epitopes, which is of great significance for developing detection methods for venoms of the snakes belonging to the same family.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3