Procedure for spotted fever group Rickettsia isolation from limited clinical blood specimens

Author:

Condit Marah E.ORCID,Jones Emma,Biggerstaff Brad J.,Kato Cecilia Y.ORCID

Abstract

Background Current isolation techniques for spotted fever group Rickettsia from clinical samples are laborious and are limited to tissue, blood and blood derivatives with volumes ideally greater than 1 mL. We validated the use of simplified methodologies for spotted fever group Rickettsia culture isolation that overcome sample volume limitations and provide utility in clinical diagnostics and research studies. Methodology/Principal findings A modified cell culture method is evaluated for the isolation of Rickettsia ssp. from human diagnostic samples. Culture sampling method, culture platform, and growth phase analysis were evaluated to determine best practices for optimal culture isolation conditions. Rickettsial isolates (R. conorii, R. rickettsii, and R. parkeri) were grown in Vero E6 cells over a course of 5 to 7 days at low inoculum treatments (~40 bacterial copies) to standardize the sampling strategy at a copy number reflective of the bacteremia in acute diagnostic samples. This methodology was verified using small volumes (50 μL) of 25 unprocessed clinical whole blood, plasma, and serum samples from acute samples of patients suspected of having Rocky Mountain Spotted Fever, of which 10 were previously confirmed positive via the PanR8 qPCR assay, 13 had no detectable Rickettsia DNA by the PanR8 qPCR assay, and 2 were not previously tested; these samples resulted in the cultivation of 7 new R. rickettsii isolates. Conclusions/Significance We observed that rickettsial isolate growth in culture is reproducibly identified by real-time PCR testing of culture media within 72 hours after inoculation. Additionally, specimen sedimentation prior to isolation to remove red blood cells was found to decrease the amount of total organism available in the inoculum. A small volume culture method was established focusing on comparative qPCR detection rather than bacterial visualization, taking significantly shorter time to detect, and requiring less manipulation compared to traditional clinical isolate culture methods.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3