Time series analyses based on the joint lagged effect analysis of pollution and meteorological factors of hemorrhagic fever with renal syndrome and the construction of prediction model

Author:

Chen Ye,Hou Weiming,Dong JingORCID

Abstract

Background Hemorrhagic fever with renal syndrome (HFRS) is a rodent-related zoonotic disease induced by hantavirus. Previous studies have identified the influence of meteorological factors on the onset of HFRS, but few studies have focused on the stratified analysis of the lagged effects and interactions of pollution and meteorological factors on HFRS. Methods We collected meteorological, contaminant and epidemiological data on cases of HFRS in Shenyang from 2005–2019. A seasonal autoregressive integrated moving average (SARIMA) model was used to predict the incidence of HFRS and compared with Holt-Winters three-parameter exponential smoothing model. A distributed lag nonlinear model (DLNM) with a maximum lag period of 16 days was applied to assess the lag, stratification and extreme effects of pollution and meteorological factors on HFRS cases, followed by a generalized additive model (GAM) to explore the interaction of SO2 and two other meteorological factors on HFRS cases. Results The SARIMA monthly model has better fit and forecasting power than its own quarterly model and the Holt-Winters model, with an optimal model of (1,1,0) (2,1,0)12. Overall, environmental factors including humidity, wind speed and SO2 were correlated with the onset of HFRS and there was a non-linear exposure-lag-response association. Extremely high SO2 increased the risk of HFRS incidence, with the maximum RR values: 2.583 (95%CI:1.145,5.827). Extremely low windy and low SO2 played a significant protective role on HFRS infection, with the minimum RR values: 0.487 (95%CI:0.260,0.912) and 0.577 (95%CI:0.370,0.898), respectively. Interaction indicated that the risk of HFRS infection reached its highest when increasing daily SO2 and decreasing humidity. Conclusions The SARIMA model may help to enhance the forecast of monthly HFRS incidence based on a long-range dataset. Our study had shown that environmental factors such as humidity and SO2 have a delayed effect on the occurrence of HFRS and that the effect of humidity can be influenced by SO2 and wind speed. Public health professionals should take greater care in controlling HFRS in low humidity, low windy conditions and 2–3 days after SO2 levels above 200 μg/m3.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference47 articles.

1. Hantavirus infections;T Avsic-Zupanc;Clin Microbiol Infect,2019

2. New cases of suspected HFRS (Hantavirus infection) in south-eastern Poland;AK Gut;Ann Agric Environ Med,2013

3. Effects and interaction of meteorological factors on hemorrhagic fever with renal syndrome incidence in Huludao City, northeastern China, 2007–2018;W Sun;PLoS Negl Trop Dis,2021

4. Hantavirus Infections in Humans and Animals, China;Y-Z Zhang;Emerging Infectious Diseases,2010

5. Hantavirus Infections in Europe;O Vapalahti;The Lancet Infectious Diseases,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3