Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions

Author:

Wang TaoORCID,Gasser Robin B.,Korhonen Pasi K.,Young Neil D.,Ang Ching-Seng,Williamson Nicholas A.,Ma Guangxu,Samarawickrama Gangi R.,Fernando Deepani D.,Fischer Katja

Abstract

Presently, there is a dearth of proteomic data for parasitic mites and their relationship with the host animals. Here, using a high throughput LC-MS/MS-based approach, we undertook the first comprehensive, large-scale proteomic investigation of egg and adult female stages of the scabies mite, Sarcoptes scabiei–one of the most important parasitic mites of humans and other animals worldwide. In total, 1,761 S. scabiei proteins were identified and quantified with high confidence. Bioinformatic analyses revealed differentially expressed proteins to be involved predominantly in biological pathways or processes including genetic information processing, energy (oxidative phosphorylation), nucleotide, amino acid, carbohydrate and/or lipid metabolism, and some adaptive processes. Selected, constitutively and highly expressed proteins, such as peptidases, scabies mite inactivated protease paralogues (SMIPPs) and muscle proteins (myosin and troponin), are proposed to be involved in key biological processes within S. scabiei, host-parasite interactions and/or the pathogenesis of scabies. These proteomic data will enable future molecular, biochemical and physiological investigations of early developmental stages of S. scabiei and the discovery of novel interventions, targeting the egg stage, given its non-susceptibility to acaricides currently approved for the treatment of scabies in humans.

Funder

National Health and Medical Research Council of Australia

Australian Research Council

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3