The gut microbiota contributes to changes in the host immune response induced by Trichinella spiralis

Author:

Li Chengyao,Liu Yi,Liu Xiaolei,Bai Xue,Jin Xuemin,Xu Fengyan,Chen Hong,Zhang Yuanyuan,Vallee Isabelle,Liu Mingyuan,Yang YongORCID

Abstract

The gut microbiota plays an important role in parasite-host interactions and the induction of immune defense responses. Trichinella spiralis is an important zoonotic parasite that can directly or indirectly interact with the host in the gut. Changes in the gut microbiota following infection with T. spiralis and the role of the gut microbiota in host immune defense against T. spiralis infection were investigated in our study. 16S rRNA sequencing analysis revealed that infection with T. spiralis can reduce the diversity of the gut microbiota and alter the structure of the gut microbiota during early infection, which was restored when the worm left the gut. Antibiotic treatment (ABX) and fecal bacterial transplantation (FMT) were used to investigate the role of the gut microbiota in the host expulsion response during infection with T. spiralis. We found that ABX mice had a higher burden of parasites, and the burden of parasites decreased after fecal bacterial transplantation. The results of flow cytometry and qPCR revealed that the disturbance of the gut microbiota affects the proportion of CD4+ T cells and the production of IL-4, which weakens Th2 responses and makes expulsion difficult. In addition, as the inflammatory response decreased with the changes of the microbiota, the Th1 response also decreased. The metabolomic results were in good agreement with these findings, as the levels of inflammatory metabolites such as ceramides were reduced in the ABX group. In general, T. spiralis infection can cause changes in the gut microbiota, and the presence or absence of microbes may also weaken intestinal inflammation and the expulsion of T. spiralis by affecting the immune response of the host.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference70 articles.

1. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice;C Sun;Saudi Pharm J,2019

2. Antibiotics in early life alter the murine colonic microbiome and adiposity;I Cho;Nature,2012

3. Gut microbiota in health and disease;I Sekirov;Physiol Rev,2010

4. Bacterial Diversity in the Intestinal Mucosa of Dysbiosis Diarrhea Mice Treated with Qiweibaizhu Powder;X Long C;Gastroenterol Res Pract.,2020

5. The microbiome and innate immunity;A Thaiss C;Nature,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3