COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis

Author:

Zhao Yudan,Yang Yongwu,Liu Min,Qin Xuening,Yu Xiran,Zhao Huimin,Li Xiaoyun,Li WeiORCID

Abstract

Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.

Funder

National Natural Science Foundation of China

Natural Science Fund of Heilongjiang Province for Excellent Young Scholars

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3