Diagnosis of brucellosis: Combining tests to improve performance

Author:

Loubet Paul,Magnan Chloé,Salipante Florian,Pastre Théo,Keriel Anne,O’Callaghan David,Sotto Albert,Lavigne Jean-PhilippeORCID

Abstract

Introduction Brucellosis, a zoonotic infectious disease caused by bacteria of the genus Brucella, remains a significant global health concern in many parts of the world. Traditional diagnostic methods, including serological tests, suffer from limitations, including low sensibility and high false-positive rates, emphasizing the need for improved diagnostic strategies. In this study, we aimed to optimize diagnostic accuracy by reevaluating serological tests and exploring novel diagnostic algorithms. Methods A retrospective observational study was conducted using sera collected between June 2012 and June 2023 at the French National Reference Center for Brucella. Various serological tests, including Rose Bengal plate test (RBT), standard agglutination test (SAT), Brucellacapt, and ELISA for IgM and IgG, were performed. Different diagnostic algorithms were evaluated, combining RBT with SAT, Brucellacapt, and ELISA to enhance the performance of diagnostic tests. Results Among 3587 sera analyzed, 148 were confirmed cases of human brucellosis. Individual serological tests exhibited good sensitivity and specificity but lacked diagnostic accuracy. However, combining RBT with SAT or Brucellacapt significantly improved diagnostic performance, with reduced false positives. The most promising results were observed when an algorithm was built combining RBT, Brucellacapt, and ELISA for IgM and IgG (a score value of 0.5 with 90.5% for sensitivity, 99.7% for specificity, 92.4% for PPV, and 99.6% for NPV). Conclusions Serological tests remain crucial for brucellosis diagnosis, but their limitations necessitate innovative diagnostic approaches. Combining multiple serological tests in diagnostic algorithms shows promise in improving diagnostic accuracy. Efforts to refine diagnostic, strengthen surveillance, and raise awareness are essential for effective brucellosis control, particularly in resource-limited settings.

Publisher

Public Library of Science (PLoS)

Reference24 articles.

1. The new global map of human brucellosis;G Pappas;Lancet Infect Dis,2006

2. CDC estimates human Brucella infections could be four times higher than previously thought.;Centers for Disease Control and Prevention;Food Safety,2023

3. Global estimate of human brucellosis incidence;CG Laine;Emerg Infect Dis,2023

4. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars;AM Whatmore;Front Microbiol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3