How do disease control measures impact spatial predictions of schistosomiasis and hookworm? The example of predicting school-based prevalence before and after preventive chemotherapy in Ghana

Author:

Kulinkina Alexandra V.ORCID,Farnham Andrea,Biritwum Nana-Kwadwo,Utzinger Jürg,Walz Yvonne

Abstract

Background Schistosomiasis and soil-transmitted helminth infections are among the neglected tropical diseases (NTDs) affecting primarily marginalized communities in low- and middle-income countries. Surveillance data for NTDs are typically sparse, and hence, geospatial predictive modeling based on remotely sensed (RS) environmental data is widely used to characterize disease transmission and treatment needs. However, as large-scale preventive chemotherapy has become a widespread practice, resulting in reduced prevalence and intensity of infection, the validity and relevance of these models should be re-assessed. Methodology We employed two nationally representative school-based prevalence surveys of Schistosoma haematobium and hookworm infections from Ghana conducted before (2008) and after (2015) the introduction of large-scale preventive chemotherapy. We derived environmental variables from fine-resolution RS data (Landsat 8) and examined a variable distance radius (1–5 km) for aggregating these variables around point-prevalence locations in a non-parametric random forest modeling approach. We used partial dependence and individual conditional expectation plots to improve interpretability of results. Principal findings The average school-level S. haematobium prevalence decreased from 23.8% to 3.6% and that of hookworm from 8.6% to 3.1% between 2008 and 2015. However, hotspots of high-prevalence locations persisted for both infections. The models with environmental data extracted from a buffer radius of 2–3 km around the school location where prevalence was measured had the best performance. Model performance (according to the R2 value) was already low and declined further from approximately 0.4 in 2008 to 0.1 in 2015 for S. haematobium and from approximately 0.3 to 0.2 for hookworm. According to the 2008 models, land surface temperature (LST), modified normalized difference water index, elevation, slope, and streams variables were associated with S. haematobium prevalence. LST, slope, and improved water coverage were associated with hookworm prevalence. Associations with the environment in 2015 could not be evaluated due to low model performance. Conclusions/significance Our study showed that in the era of preventive chemotherapy, associations between S. haematobium and hookworm infections and the environment weakened, and thus predictive power of environmental models declined. In light of these observations, it is timely to develop new cost-effective passive surveillance methods for NTDs as an alternative to costly surveys, and to focus on persisting hotspots of infection with additional interventions to reduce reinfection. We further question the broad application of RS-based modeling for environmental diseases for which large-scale pharmaceutical interventions are in place.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3