Molluscicidal and antioxidant activities of silver nanoparticles on the multi-species of snail intermediate hosts of schistosomiasis

Author:

Zayed Khaled M.ORCID,Guo Yun-Hai,Lv Shan,Zhang Yi,Zhou Xiao-NongORCID

Abstract

Background Schistosomiasis, also known as bilharzia, is the second important parasitic disease after malaria. The present study aimed to evaluate the molluscicidal effects of silver nanoparticles on Biomphalaria alexandrina, B. glabrata, Oncomelania hupensis, snail intermediate hosts of intestinal schistosomes (i.e. Schistosoma mansoni and S. japonicum), along with the changes their antioxidant enzymes. Methods Silver (Ag) nano powder (Ag-NPs) was selected to test the molluscicidal effects on three species of freshwater snails. Exposure to Ag-NPs induced snail mortality and the LC50 and LC90 values of Ag-NPs for each snail species were calculated by probit analysis. Control snails were maintained under the same experimental conditions in dechlorinated water. Snail hemolymph was collected to measure the levels of antioxidant enzymes, such as total antioxidants capacity (TCA), glutathione (GSH), catalase (CAT) and nitric oxide (NO). In addition, the non-target organism, Daphnia magna, was exposed to a series of Ag-NPs concentration, similar to the group of experimental snails, in order to evaluate the LC50 and LC90 and compare these values to those obtained for the targeted snails. Results The results indicated that Ag-NPs had a molluscicidal effect on tested snails with the variation in lethal concentration. The LC50 values of Ag-NPs for B. alexandrina snails exposed for 24, 48, 72 hrs and 7 days were 7.91, 5.69, 3.83 and 1.91 parts per million (ppm), respectively. The LC50 values for B. glabrata snails exposed for 24, 48, 72 hrs and 7 days were 16.55, 10.44, 6.91 and 4.13 ppm, respectively, while the LC50 values for O. hupensis snails exposed for 24, 48, 72 hrs and 7 days were 46.5, 29.85, 24.49 and 9.62 ppm, respectively. Moreover, there is no mortality detected on D. magna when exposed to more than double and half concentration (50 ppm) of Ag-NPs during a continuous period of 3 hrs, whereas the LC90 value for B. alexandrina snails was 18 ppm. The molluscicidal effect of the synthesized Ag-NPs seems to be linked to a potential reduction of the antioxidant activity in the snail’s hemolymph. Conclusions Synthesized Ag-NPs have a clear molluscicidal effect against various snail intermediate hosts of intestinal schistosome parasites and could potentially serve as next generation molluscicides.

Funder

Research Fund for the Technical Reserves, National Institute of Parasitic Diseases, Chinese CDC

Ministry of Science and Technology of the People’s Republic of China

International Department of the Ministry of Science and Technology of China

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3