Molecular characterization of a novel serine proteinase from Trichinella spiralis and its participation in larval invasion of gut epithelium

Author:

Song Yan Yan,Zhang Xin Zhuo,Wang Bo Ning,Weng Min Min,Zhang Zhao Yu,Guo Xin,Zhang Xi,Wang Zhong Quan,Cui JingORCID

Abstract

Background A novel serine proteinase of Trichinells spiralis (TsSPc) has been identified in the excretion/secretion (ES) antigens, but its role in larval invasion is unclear. The aim of this study was to clone and express TsSPc, identify its biological and biochemical characteristics, and investigate its role on larval invasion of gut epithelium during T. spiralis infection. Methodology/Principal findings TsSPc has a functional domain of serine proteinase, and its tertiary structure consists of three amino acid residues (His88, Asp139 and Ser229) forming a pocket like functional domain. Recombinant TsSPc (rTsSPc) was expressed and purified. The rTsSPc has good immunogenicity. On Western blot analysis, rTsSPc was recognized by infection serum and anti-rTsSPc serum, natural TsSPc in crude and ES antigens was identified by anti-rTsSPc serum. The results of qPCR, Western blot and indirect immunofluorescence test (IIFT) showed that TsSPc was expressed at diverse stage worms, and mainly localized at cuticle, stichosome and intrauterine embryos of this nematode. The rTsSPc had enzymatic activity of native serine protease, which hydrolyzed the substrate BAEE, casein and collagen I. After site directed mutation of enzymatic active sites of TsSPc, its antigenicity did not change but the enzyme activity was fully lost. rTsSPc specifically bound to intestinal epithelium cells (IECs) and the binding sites were mainly localized in cell membrane and cytoplasm. rTsSPc accelerated larval invasion of IECs, whereas anti-rTsSPc antibodies and TsSPc-specific dsRNA obviously hindered larval invasion. Conclusions TsSPc was a surface and secretory proteinase of the parasite, participated in larval invasion of gut epithelium, and may be considered as a candidate vaccine target molecule against Trichinella intrusion and infection.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3