Bothrops lanceolatus snake venom impairs mitochondrial respiration and induces DNA release in human heart preparation

Author:

Cano-Sanchez Mariola,Ben-Hassen Kais,Louis Olivier Pierre,Dantin Fabienne,Gueye Papa,Roques Francois,Mehdaoui Hossein,Resiere Dabor,Neviere RemiORCID

Abstract

Introduction Envenomations by Bothrops snakebites can induce overwhelming systemic inflammation ultimately leading to multiple organ system failure and death. Release of damage-associated molecular pattern molecules (DAMPs), in particular of mitochondrial origin, has been implicated in the pathophysiology of the deregulated innate immune response. Objective To test whether whole Bothrops lanceolatus venom would induce mitochondrial dysfunction and DAMPs release in human heart preparations. Methods Human atrial trabeculae were obtained during cannulation for cardiopulmonary bypass from patients who were undergoing routine coronary artery bypass surgery. Cardiac fibers were incubated with vehicle and whole Bothrops lanceolatus venom for 24hr before high-resolution respirometry, mitochondrial membrane permeability evaluation and quantification of mitochondrial DNA. Results Compared with vehicle, incubation of human cardiac muscle with whole Bothrops lanceolatus venom for 24hr impaired respiratory control ratio and mitochondrial membrane permeability. Levels of mitochondrial DNA increased in the medium of cardiac cell preparation incubated with venom of Bothrops lanceolatus. Conclusion Our study suggests that whole venom of Bothrops lanceolatus impairs mitochondrial oxidative phosphorylation capacity and increases mitochondrial membrane permeability. Cardiac mitochondrial dysfunction associated with mitochondrial DAMPs release may alter myocardium function and engage the innate immune response, which may both participate to the cardiotoxicity occurring in patients with severe envenomation.

Funder

ANR Agence Nationale de la Recherche

Agence Nationale de la Recherche

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3