Genome-wide screening identified SEC61A1 as an essential factor for mycolactone-dependent apoptosis in human premonocytic THP-1 cells

Author:

Kawashima Akira,Kiriya Mitsuo,En Junichiro,Tanigawa Kazunari,Nakamura Yasuhiro,Fujiwara Yoko,Luo Yuqian,Maruyama Keiji,Watanabe Shigekazu,Goto Masamichi,Suzuki KoichiORCID

Abstract

Buruli ulcer is a chronic skin disease caused by a toxic lipid mycolactone produced by Mycobacterium ulcerans, which induces local skin tissue destruction and analgesia. However, the cytotoxicity pathway induced by mycolactone remains largely unknown. Here we investigated the mycolactone-induced cell death pathway by screening host factors using a genome-scale lenti-CRISPR mutagenesis assay in human premonocytic THP-1 cells. As a result, 884 genes were identified as candidates causing mycolactone-induced cell death, among which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest scoring. CRISPR/Cas9 genome editing of SEC61A1 in THP-1 cells suppressed mycolactone-induced endoplasmic reticulum stress, especially eIF2α phosphorylation, and caspase-dependent apoptosis. Although previous studies have reported that mycolactone targets SEC61A1 based on mutation screening and structural analysis in several cell lines, we have reconfirmed that SEC61A1 is a mycolactone target by genome-wide screening in THP-1 cells. These results shed light on the cytotoxicity of mycolactone and suggest that the inhibition of mycolactone activity or SEC61A1 downstream cascades will be a novel therapeutic modality to eliminate the harmful effects of mycolactone in addition to the 8-week antibiotic regimen of rifampicin and clarithromycin.

Funder

Japan Society for the Promotion of Science

Takeda Science Foundation

GlaxoSmithKline foundation

AMED

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3