Stat3/IL-6 signaling mediates sustained pneumonia induced by Agiostrongylus cantonensis

Author:

Zhou Hongli,Lu Yuting,Wei Hang,Chen Yixin,Limpanon Yanin,Dekumyoy Paron,Huang Ping,Shi Peiyao,Lv ZhiyueORCID

Abstract

Angiostrongylus cantonensis (AC) is well-documented that parasitizes the host brain and causes eosinophilic meningitis. The migration route of AC in permissive hosts is well demonstrated, while in nonpermissive hosts, it remains to be fully defined. In the present study, we exploited live imaging technology, morphological and pathological configuration analysis, and molecular biological technologies to explore the migration route of AC and the accompanying tissue damage in nonpermissive and permissive hosts. Our data indicated that, in nonpermissive host mouse, AC larvae migrated from intestinal wall to liver at 2 hours post-infection (hpi), from liver to lung at 4 hpi and then from lung to brain at 8 hpi. AC larval migration caused fatal lung injury (pneumonia) during acute and early infection phases, along with significant activation of Stat3/IL-6 signaling. In addition, AC induce sustained interstitial pneumonia in mouse and rat and pulmonary fibrosis only in rat during late infection phase. Moreover, during the early and late infection phases, Th2 cytokine expression and Stat3 and IL-6 signaling were persistently enhanced and myeloid macrophage cells were notably enriched in host lung, and administration of Stat3 and IL-6 inhibitors (C188-9 and LMT-28) attenuated AC infection-induced acute pneumonia in mice. Overall, we are the first to provide direct and systemic laboratory evidence of AC migration route in a nonpermissive host and report that infection with a high dose of AC larvae could result in acute and fatal pneumonia through Stat3/IL-6 signaling in mice. These findings may present a feasible to rational strategy to minimize the pathogenesis induced by AC.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

specific research fund of the Innovation platform for Academicians of Hainan Province

Guangdong Natural Science Foundation

Science and Technology Planning Project of Guangdong Province

Key Research and Development Program of Hainan Province

Major Science and Technology Program of Hainan Province

National Parasitic Resources Center of China

Open Foundation of Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3