Human risk to tick encounters in the southeastern United States estimated with spatial distribution modeling

Author:

Butler Rebecca A.,Papeş Mona,Vogt James T.,Paulsen Dave J.,Crowe Christopher,Trout Fryxell Rebecca T.ORCID

Abstract

Expanding geographic distribution and increased populations of ticks has resulted in an upsurge of human-tick encounters in the United States (US), leading to an increase in tickborne disease reporting. Limited knowledge of the broadscale spatial range of tick species is heightened by a rapidly changing environment. Therefore, we partnered with the Forest Inventory and Analysis (FIA) program of the Forest Service, U.S. Department of Agriculture and used passive tick surveillance to better understand spatiotemporal variables associated with foresters encountering three tick species (Amblyomma americanum L., Dermacentor variabilis Say, and Ixodes scapularis L.) in the southeastern US. Eight years (2014–2021) of tick encounter data were used to fit environmental niche and generalized linear models to predict where and when ticks are likely to be encountered. Our results indicate temporal and environmental partitioning of the three species. Ixodes scapularis were more likely to be encountered in the autumn and winter seasons and associated with soil organic matter, vegetation indices, evapotranspiration, temperature, and gross primary productivity. By contrast, A. americanum and D. variabilis were more likely to be encountered in spring and summer seasons and associated with elevation, landcover, temperature, dead belowground biomass, vapor pressure, and precipitation. Regions in the southeast least suitable for encountering ticks included the Blue Ridge, Mississippi Alluvial Plain, and the Southern Florida Coastal Plain, whereas suitable regions included the Interior Plateau, Central Appalachians, Ozark Highlands, Boston Mountains, and the Ouachita Mountains. Spatial and temporal patterns of different tick species can inform outdoorsmen and the public on tick avoidance measures, reduce tick populations by managing suitable tick habitats, and monitoring areas with unsuitable tick habitat for potential missed encounters.

Funder

USDA Forest Service - Southern Research Station

University of Tennessee Department of Entomology and Plant Pathology

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3