Visual closed dumbbell-mediated isothermal amplification (CDA) for on-site detection of Rickettsia raoultii

Author:

Gui Zheng,Cai Hao,Wu Lin,Miao Qing,Yu Jing feng,Cai Ting,Mao RuiORCID

Abstract

Spotted fever group (SFG) rickettsioses are important zoonoses, threatening human health seriously and gradually attracting more attention in the world. SFG rickettsiae are classified as neglected pathogens. If these pathogens are detected at all, they are usually recognized very late in the infection through indirect detection of specific antibodies. Previous studies have shown that Rickettsia raoultii (R. raoultii), a member of the SFG rickettsiae, occurs with increasing incidence in remote countries. Therefore, a rapid detection method for R. raoultii is in urgently need. In this study, a R. raoultii diagnosis method by closed dumbbell-mediated isothermal amplification (R-CDA) assay targeting a conserved sequence of the outer membrane protein A (OmpA) gene with high sensitivity and specificity was developed. This assay offered a rapid and simple method for on-site detection of R. raoultii. Firstly, four pairs of R-CDA primers were designed and the optimum primer set was selected to amplify target gene specifically and effectively. Then, a pair of outer primer was designed to accelerate the reaction based on the inner primers to establish the RO-CDA reaction. In addition, the results of real-time amplification curves, melting curves and end-point colorimetric judgements showed that the established visual RO-CDA reaction could accurately detect R. raoultii without cross-reaction with other closely related pathogens. Furthermore, the detection limit of visual RO-CDA assay was 10 copies/μL, which was feasible for on-site detection with merits of easy-operation, rapidity, high sensitivity, and specificity. In conclusion, the developed RO-CDA detection method could be helpful for pathogen screening and epidemic prevention at the point of care.

Funder

Medical Scientific Research Foundation of Zhejiang Province, China

Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences

Health Science and technology program of Inner Mongolia Autonomous Region

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference41 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3