Salmonella typhimurium targeting with monoclonal antibodies prevents infection in mice

Author:

Li JieORCID,Yang Yang,Fan Zhongyi,Huang Zhiqiang,Chen Jun,Liu QingORCID

Abstract

Salmonella is a prevalent foodborne and waterborne pathogens threating global public health and food safety. Given the diversity of Salmonella serotypes and the emergence of antibiotic-resistant strains, there is an urgent need for the development of broadly protective therapies. This study aims to prepare monoclonal antibodies (Mabs) with broad reactivity against multi-serotype Salmonella strains, potentially offering cross-protection. We prepared two Mabs F1D4 and B7D4 against protein FliK and BcsZ, two potential vaccine candidates against multi-serotype Salmonella. The two Mabs belonging to IgG1 isotype exhibited high titers of 1:256,000 and 1:512,000 respectively, as well as broad cross-reactivity against 28 different serotypes of Salmonella strains with percentages of 89.29% and 92.86%, correspondingly. Neutralizing effects of the two Mabs on Salmonella growth, adhesion, invasion and motility was evaluated in vitro using bacteriostatic and bactericidal activity with and without complement and bacterial invasion inhibition assay. Additionally, cytotoxicity assays, animal toxicity analyses, and pharmacokinetic evaluations demonstrated the safety and sustained effectiveness of both Mabs. Furthermore, F1D4 or B7D4-therapy in mice challenged with S. Typhimurium LT2 exhibited milder organs damage and lower Salmonella colonization, as well as the higher relative survival of 86.67% and 93.33% respectively. This study produced two broadly reactive and potential cross protective Mabs F1D4 and B7D4, which offered new possibilities for immunotherapy of salmonellosis.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Special Funds for Strategic Emerging Industry of Shenzhen

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3