Tick species diversity and potential distribution alternation of dominant ticks under different climate scenarios in Xinjiang, China

Author:

Ma RuiORCID,Li Chunfu,Gao Ai,Jiang Na,Li Jian,Hu Wei,Feng XinyuORCID

Abstract

Ticks are a hematophagous parasite and a vector of pathogens for numerous human and animal diseases of significant importance. The expansion of tick distribution and the increased risk of tick-borne diseases due to global climate change necessitates further study of the spatial distribution trend of ticks and their potential influencing factors. This study constructed a dataset of tick species distribution in Xinjiang for 60 years based on literature database retrieval and historical data collection (January 1963-January 2023). The distribution data were extracted, corrected, and deduplicated. The dominant tick species were selected for analysis using the MaxEnt model to assess their potential distribution in different periods under the current and BCC-CSM2.MR mode scenarios. The results indicated that there are eight genera and 48 species of ticks in 108 cities and counties of Xinjiang, with Hyalomma asiaticum, Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis punctatus being the top four dominant species. The MaxEnt model analysis revealed that the suitability areas of the four dominant ticks were mainly distributed in the north of Xinjiang, in areas such as Altay and Tacheng Prefecture. Over the next four periods, the medium and high suitable areas within the potential distribution range of the four tick species will expand towards the northwest. Additionally, new suitability areas will emerge in Altay, Changji Hui Autonomous Prefecture, and other local areas. The 60-year tick dataset in this study provides a map of preliminary tick distribution in Xinjiang, with a diverse array of tick species and distribution patterns throughout the area. In addition, the MaxEnt model revealed the spatial change characteristics and future distribution trend of ticks in Xinjiang, which can provide an instrumental data reference for tick monitoring and tick-borne disease risk prediction not only in the region but also in other countries participating in the Belt and Road Initiative.

Funder

Inner Mongolia Autonomous Region Science and Technology leading talent team: Zoonotic disease prevention and Control Technology Innovation team

Key Technology Project of Inner Mongolia Science and Technology Department

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock

Study on pathogen spectrum, temporal and spatial distribution and transmission features of the important emerging and re-emerging zoonosis in Inner Mongolia Autonomous Region

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3