Machine learning-based in-hospital mortality prediction of HIV/AIDS patients with Talaromyces marneffei infection in Guangxi, China

Author:

Shi Minjuan,Lin Jianyan,Wei Wudi,Qin Yaqin,Meng Sirun,Chen Xiaoyu,Li Yueqi,Chen Rongfeng,Yuan Zongxiang,Qin Yingmei,Huang Jiegang,Liang Bingyu,Liao Yanyan,Ye Li,Liang Hao,Xie Zhiman,Jiang JunjunORCID

Abstract

Objective Talaromycosis is a serious regional disease endemic in Southeast Asia. In China, Talaromyces marneffei (T. marneffei) infections is mainly concentrated in the southern region, especially in Guangxi, and cause considerable in-hospital mortality in HIV-infected individuals. Currently, the factors that influence in-hospital death of HIV/AIDS patients with T. marneffei infection are not completely clear. Existing machine learning techniques can be used to develop a predictive model to identify relevant prognostic factors to predict death and appears to be essential to reducing in-hospital mortality. Methods We prospectively enrolled HIV/AIDS patients with talaromycosis in the Fourth People’s Hospital of Nanning, Guangxi, from January 2012 to June 2019. Clinical features were selected and used to train four different machine learning models (logistic regression, XGBoost, KNN, and SVM) to predict the treatment outcome of hospitalized patients, and 30% internal validation was used to evaluate the performance of models. Machine learning model performance was assessed according to a range of learning metrics, including area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) tool was used to explain the model. Results A total of 1927 HIV/AIDS patients with T. marneffei infection were included. The average in-hospital mortality rate was 13.3% (256/1927) from 2012 to 2019. The most common complications/coinfections were pneumonia (68.9%), followed by oral candida (47.5%), and tuberculosis (40.6%). Deceased patients showed higher CD4/CD8 ratios, aspartate aminotransferase (AST) levels, creatinine levels, urea levels, uric acid (UA) levels, lactate dehydrogenase (LDH) levels, total bilirubin levels, creatine kinase levels, white blood-cell counts (WBC) counts, neutrophil counts, procaicltonin levels and C-reactive protein (CRP) levels and lower CD3+ T-cell count, CD8+ T-cell count, and lymphocyte counts, platelet (PLT), high-density lipoprotein cholesterol (HDL), hemoglobin (Hb) levels than those of surviving patients. The predictive XGBoost model exhibited 0.71 sensitivity, 0.99 specificity, and 0.97 AUC in the training dataset, and our outcome prediction model provided robust discrimination in the testing dataset, showing an AUC of 0.90 with 0.69 sensitivity and 0.96 specificity. The other three models were ruled out due to poor performance. Septic shock and respiratory failure were the most important predictive features, followed by uric acid, urea, platelets, and the AST/ALT ratios. Conclusion The XGBoost machine learning model is a good predictor in the hospitalization outcome of HIV/AIDS patients with T. marneffei infection. The model may have potential application in mortality prediction and high-risk factor identification in the talaromycosis population.

Funder

National Natural Science Foundation of China

Guangxi Bagui Scholar

Guangxi Science Fund for Distinguished Young Scholars

Guangxi Medical University Training Program for Distinguished Young Scholars

Guangxi Natural Science Foundation of Guangxi

Guangxi Key Research and Development Plan

the Nanning Science and Technology Major Project

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference37 articles.

1. Talaromycosis (Penicilliosis) Due to Talaromyces (Penicillium) marneffei: Insights into the Clinical Trends of a Major Fungal Disease 60 Years After the Discovery of the Pathogen;C Cao;Mycopathologia,2019

2. Clinical characteristics and outcome of Penicillium marneffei infection among HIV-infected patients in northern Vietnam;M Larsson;AIDS research and therapy,2012

3. Burden of Talaromyces marneffei infection in people living with HIV/AIDS in Asia during ART era: a systematic review and meta-analysis;Y Qin;BMC infectious diseases,2020

4. Serious fungal infections in Thailand;M Chayakulkeeree;European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology,2017

5. Effects of Talaromyces marneffei infection on mortality of HIV/AIDS patients in southern China: a retrospective cohort study;J Jiang;Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3