Development of a simple, rapid, and sensitive molecular diagnostic assay for cholera

Author:

Chakraborty SubhraORCID,Velagic Mirza,Connor Sean

Abstract

Cholera continues to inflict high rates of morbidity and mortality. Prompt identification of cholera cases facilitates rapid outbreak responses in the short term while providing reliable surveillance data to guide long-term policies and interventions. Microbiological stool culture, the current recognized gold standard for diagnosing cholera, has significant limitations. Rapid diagnostic tests (RDTs) represent promising alternatives for diagnosing cholera in areas with limited laboratory infrastructure. However, studies conducted with the current cholera RDTs demonstrated wide variations in sensitivity and specificity. To address this gap in the diagnosis of cholera, we developed a simple, rapid, and sensitive diagnostic assay, "Rapid LAMP based Diagnostic Test (RLDT)." With a novel, simple sample preparation method directly from the fecal samples along with lyophilized reaction strips and using established Loop-mediated Isothermal Amplification (LAMP) platform, cholera toxin gene (ctxA) and O1 (O1rfb) gene could be detected in less than an hour. Cholera RLDT assay is cold chain and electricity-free. To avoid any end-user bias, a battery-operated, handheld reader was used to read the RLDT results. The performance specifications of the cholera RLDT assay, including analytical sensitivity and specificity, were evaluated using direct fecal samples, dried fecal samples on filter paper, and environmental water samples spiked with cholera strain. The limit of detection (LOD) was ~104 CFU/gm of stool for both ctxA and O1 genes, corresponding to about 1 CFU of Vibrio cholerae per reaction within 40 minutes. The LOD was 10 bacteria per ml of environmental water when tested with RLDT directly, without enrichment. Being simple, RLDT has the potential to be applied in resource-poor endemic settings for rapid, sensitive, and reliable diagnosis of cholera.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference43 articles.

1. Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell;JG Morris;Clin Infect Dis,2003

2. Cholera.;DA Sack;Lancet,2004

3. World Health Organization. Cholera [Internet]. [cited 2022 August 16]. Available from: https://www.who.int/health-topics/cholera#tab=tab_1

4. Global Task Force on Cholera Control. About cholera [Internet]. [cited 2022 August 16]. Available from: https://www.gtfcc.org/about-cholera/

5. Updated global burden of cholera in endemic countries.;M Ali;PLoS Negl Trop Dis,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3