The effect of weather and climate on dengue outbreak risk in Peru, 2000-2018: A time-series analysis

Author:

Dostal TiaORCID,Meisner JulianneORCID,Munayco CésarORCID,García Patricia J.,Cárcamo César,Pérez Lu Jose EnriqueORCID,Morin CoryORCID,Frisbie Lauren,Rabinowitz Peter M.

Abstract

Background Dengue fever is the most common arboviral disease in humans, with an estimated 50-100 million annual infections worldwide. Dengue fever cases have increased substantially in the past four decades, driven largely by anthropogenic factors including climate change. More than half the population of Peru is at risk of dengue infection and due to its geography, Peru is also particularly sensitive to the effects of El Niño Southern Oscillation (ENSO). Determining the effect of ENSO on the risk for dengue outbreaks is of particular public health relevance and may also be applicable to other Aedes-vectored viruses. Methods We conducted a time-series analysis at the level of the district-month, using surveillance data collected from January 2000 to September 2018 from all districts with a mean elevation suitable to survival of the mosquito vector (<2,500m), and ENSO and weather data from publicly-available datasets maintained by national and international agencies. We took a Bayesian hierarchical modeling approach to address correlation in space, and B-splines with four knots per year to address correlation in time. We furthermore conducted subgroup analyses by season and natural region. Results We detected a positive and significant effect of temperature (°C, RR 1.14, 95% CI 1.13, 1.15, adjusted for precipitation) and ENSO (ICEN index: RR 1.17, 95% CI 1.15, 1.20; ONI index: RR 1.04, 95% CI 1.02, 1.07) on outbreak risk, but no evidence of a strong effect for precipitation after adjustment for temperature. Both natural region and season were found to be significant effect modifiers of the ENSO-dengue effect, with the effect of ENSO being stronger in the summer and the Selva Alta and Costa regions, compared with winter and Selva Baja and Sierra regions. Conclusions Our results provide strong evidence that temperature and ENSO have significant effects on dengue outbreaks in Peru, however these results interact with region and season, and are stronger for local ENSO impacts than remote ENSO impacts. These findings support optimization of a dengue early warning system based on local weather and climate monitoring, including where and when to deploy such a system and parameterization of ENSO events, and provide high-precision effect estimates for future climate and dengue modeling efforts.

Funder

National Institute of Environmental Health Sciences

University of Washington Population Health Initiative

National Oceanic and Atmospheric Administration

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference55 articles.

1. Ten health issues WHO will tackle this year; 2019. Available from: https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019.

2. type [; 2020]Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

3. Dengue cases. Pan American Health Organization / World Health Organization; 2020. Available from: https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html.

4. World Health Organization. Global Strategy for Dengue Prevention and Control; 2012. Available from: http://www.who.int/denguecontrol/9789241504034/en/.

5. Instituto Nacional de Salud. Eficacia y seguridad de la vacuna contra dengue; 2018. Available from: http://bvs.minsa.gob.pe/local/MINSA/4511.pdf.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3