Long-term projections of the impacts of warming temperatures on Zika and dengue risk in four Brazilian cities using a temperature-dependent basic reproduction number

Author:

Van Wyk Hannah,Eisenberg Joseph N. S.,Brouwer Andrew F.ORCID

Abstract

For vector-borne diseases the basic reproduction number R 0, a measure of a disease’s epidemic potential, is highly temperature-dependent. Recent work characterizing these temperature dependencies has highlighted how climate change may impact geographic disease spread. We extend this prior work by examining how newly emerging diseases, like Zika, will be impacted by specific future climate change scenarios in four diverse regions of Brazil, a country that has been profoundly impacted by Zika. We estimated a R 0 ( T ), derived from a compartmental transmission model, characterizing Zika (and, for comparison, dengue) transmission potential as a function of temperature-dependent biological parameters specific to Aedes aegypti. We obtained historical temperature data for the five-year period 2015–2019 and projections for 2045–2049 by fitting cubic spline interpolations to data from simulated atmospheric data provided by the CMIP-6 project (specifically, generated by the GFDL-ESM4 model), which provides projections under four Shared Socioeconomic Pathways (SSP). These four SSP scenarios correspond to varying levels of climate change severity. We applied this approach to four Brazilian cities (Manaus, Recife, Rio de Janeiro, and São Paulo) that represent diverse climatic regions. Our model predicts that the R 0 ( T ) for Zika peaks at 2.7 around 30°C, while for dengue it peaks at 6.8 around 31°C. We find that the epidemic potential of Zika will increase beyond current levels in Brazil in all of the climate scenarios. For Manaus, we predict that the annual R 0 range will increase from 2.1–2.5, to 2.3–2.7, for Recife we project an increase from 0.4–1.9 to 0.6–2.3, for Rio de Janeiro from 0–1.9 to 0–2.3, and for São Paulo from 0–0.3 to 0–0.7. As Zika immunity wanes and temperatures increase, there will be increasing epidemic potential and longer transmission seasons, especially in regions where transmission is currently marginal. Surveillance systems should be implemented and sustained for early detection.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference61 articles.

1. World Health Organization. Zika Situation Report; 2016. https://www.who.int/emergencies/zika-virus/situation-report/who-zika-situation-report-12-02-2016.pdf. Accessed January 29, 2022.

2. Zika virus transmission—region of the Americas, May 15, 2015–December 15, 2016;J Ikejezie;Morbidity and Mortality Weekly Report,2017

3. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change;SJ Ryan;PLOS Neglected Tropical Diseases,2019

4. Zika virus outbreak in Brazil under current and future climate;T Sadeghieh;Epidemics,2021

5. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050;SJ Ryan;Global Change Biology,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3