Abstract
For vector-borne diseases the basic reproduction number R 0, a measure of a disease’s epidemic potential, is highly temperature-dependent. Recent work characterizing these temperature dependencies has highlighted how climate change may impact geographic disease spread. We extend this prior work by examining how newly emerging diseases, like Zika, will be impacted by specific future climate change scenarios in four diverse regions of Brazil, a country that has been profoundly impacted by Zika. We estimated a R 0 ( T ), derived from a compartmental transmission model, characterizing Zika (and, for comparison, dengue) transmission potential as a function of temperature-dependent biological parameters specific to Aedes aegypti. We obtained historical temperature data for the five-year period 2015–2019 and projections for 2045–2049 by fitting cubic spline interpolations to data from simulated atmospheric data provided by the CMIP-6 project (specifically, generated by the GFDL-ESM4 model), which provides projections under four Shared Socioeconomic Pathways (SSP). These four SSP scenarios correspond to varying levels of climate change severity. We applied this approach to four Brazilian cities (Manaus, Recife, Rio de Janeiro, and São Paulo) that represent diverse climatic regions. Our model predicts that the R 0 ( T ) for Zika peaks at 2.7 around 30°C, while for dengue it peaks at 6.8 around 31°C. We find that the epidemic potential of Zika will increase beyond current levels in Brazil in all of the climate scenarios. For Manaus, we predict that the annual R 0 range will increase from 2.1–2.5, to 2.3–2.7, for Recife we project an increase from 0.4–1.9 to 0.6–2.3, for Rio de Janeiro from 0–1.9 to 0–2.3, and for São Paulo from 0–0.3 to 0–0.7. As Zika immunity wanes and temperatures increase, there will be increasing epidemic potential and longer transmission seasons, especially in regions where transmission is currently marginal. Surveillance systems should be implemented and sustained for early detection.
Funder
National Institute of Allergy and Infectious Diseases
Publisher
Public Library of Science (PLoS)
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health
Reference61 articles.
1. World Health Organization. Zika Situation Report; 2016. https://www.who.int/emergencies/zika-virus/situation-report/who-zika-situation-report-12-02-2016.pdf. Accessed January 29, 2022.
2. Zika virus transmission—region of the Americas, May 15, 2015–December 15, 2016;J Ikejezie;Morbidity and Mortality Weekly Report,2017
3. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change;SJ Ryan;PLOS Neglected Tropical Diseases,2019
4. Zika virus outbreak in Brazil under current and future climate;T Sadeghieh;Epidemics,2021
5. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050;SJ Ryan;Global Change Biology,2021
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献