Spatiotemporal association of rapid urbanization and water-body distribution on hemorrhagic fever with renal syndrome: A case study in the city of Xi’an, China

Author:

Shen Li,Sun Minghao,Wei XiaoORCID,Bai Yao,Hu QingwuORCID,Song Shuxuan,Gao Boxuan,Zhang Weilu,Liu Jifeng,Shao Zhongjun,Liu KunORCID

Abstract

Hemorrhagic fever with renal syndrome (HFRS) is a zoonosis characterized by clinical features of high fever, hemorrhage, and renal damage. China has the largest number of HFRS cases worldwide, accounting for over 90% of the total reported cases. In this paper, we used surveyed HFRS data and satellite imagery to conduct geostatistical analysis for investigating the associations of rapid urbanization, water bodies, and other factors on the spatiotemporal dynamics of HFRS from year 2005 to 2018 in Xi’an City, Northwest China. The results revealed an evident epidemic aggregation in the incidence of HFRS within Xi’an City with a phenomenal fluctuation in periodic time series. Rapid urbanization was found to greatly affect the HFRS incidence in two different time phases. HFRS caused by urbanization influences farmers to a lesser extent than it does to non-farmers. The association of water bodies with the HFRS incidence rate was found to be higher within the radii of 696.15 m and 1575.39 m, which represented significant thresholds. The results also showed that geomatics approaches can be used for spatiotemporally investigating the HFRS dynamic characteristics and supporting effective allocations of resources to formulate strategies for preventing epidemics.

Funder

national natural science foundation of china

National Natural Science Foundation of China

natural science foundation of shaanxi province

2020 national innovation training program for college students at wuhan university

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3