Revealing the dynamic whole transcriptome landscape of Clonorchis sinensis: Insights into the regulatory roles of noncoding RNAs and microtubule-related genes in development

Author:

Qiu Yangyuan,Wang Cunzhou,Wang Jing,L. V. Qingbo,Sun Lulu,Yang Yaming,Liu Mingyuan,Liu Xiaolei,Li Chen,Tang BinORCID

Abstract

Clonorchis sinensis is a significant zoonotic food-borne parasite that causes a range of hepatobiliary diseases, which in severe cases can even lead to cholangiocarcinoma. To explore new diagnostic and treatment strategies, the dynamic RNA regulatory processes across different developmental stages of C. sinensis were analyzed by using whole-transcriptome sequencing. The chromosomal-level genome of C. sinensis was used for sequence alignment and annotation. In this study, we identified a total of 59,103 RNAs in the whole genome, including 2,384 miRNAs, 25,459 mRNAs, 27,564 lncRNAs and 3,696 circRNAs. Differential expression analysis identified 6,556 differentially expressed mRNAs, 2,231 lncRNAs, 877 miRNAs and 20 circRNAs at different developmental stages. Functional enrichment analysis highlighted the critical role of microtubule-related biological processes in the growth and development of C. sinensis. And coexpression analysis revealed 97 lncRNAs and 85 circRNAs that were coexpressed with 42 differentially expressed mRNAs that associated with microtubules at different developmental stages of C. sinensis. The expression of the microtubule-related genes dynein light chain 2 (DLC2) and dynein light chain 4 (DLC4) increased with C. sinensis development, and DLC2/4 could be inhibited by albendazole. Finally, by constructing competing endogenous RNA (ceRNA) networks, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA regulatory relationships were constructed, and the ceRNA networks of MSTRG.14258.5-novel_miR_2287-newGene_28215 and MSTRG.14258.5-novel_miR_2216-CSKR_109340 were verified. This study suggests, through whole transcriptome sequencing, that the context of microtubule regulation may play an essential role in the development and growth of C. sinensis.

Funder

Key Technologies Research and Development Program

Yunan Ten Thousand Talents Plan Young and Elite Talents Project

Fundamental Research Funds for the Central Universities

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3