Less is more: Developing an approach for assessing clustering at the lower administrative boundaries that increases the yield of active screening for leprosy in Bihar, India

Author:

Ortuño-Gutiérrez NimerORCID,Shih Pin-Wei,Wagh Aashish,Mugudalabetta Shivakumar,Pandey Bijoy,de Jong Bouke C.,Richardus Jan Hendrik,Hasker Epco

Abstract

Background In India, leprosy clusters at hamlet level but detailed information is lacking. We aim to identify high-incidence hamlets to be targeted for active screening and post-exposure prophylaxis. Methodology We paid home visits to a cohort of leprosy patients registered between April 1st, 2020, and March 31st, 2022. Patients were interviewed and household members were screened for leprosy. We used an open-source app(ODK) to collect data on patients’ mobility, screening results of household members, and geographic coordinates of their households. Clustering was analysed with Kulldorff’s spatial scan statistic(SaTScan). Outlines of hamlets and population estimates were obtained through an open-source high-resolution population density map(https://data.humdata.org), using kernel density estimation in QGIS, an open-source software. Results We enrolled 169 patients and screened 1,044 household contacts in Bisfi and Benipatti blocks of Bihar. Median number of years of residing in the village was 17, interquartile range(IQR)12-30. There were 11 new leprosy cases among 658 household contacts examined(167 per 10,000), of which seven had paucibacillary leprosy, one was a child under 14 years, and none had visible disabilities. We identified 739 hamlets with a total population of 802,788(median 163, IQR 65–774). There were five high incidence clusters including 12% of the population and 46%(78/169) of the leprosy cases. One highly significant cluster with a relative risk (RR) of 4.7(p<0.0001) included 32 hamlets and 27 cases in 33,609 population. A second highly significant cluster included 32 hamlets and 24 cases in 33,809 population with a RR of 4.1(p<0.001). The third highly significant cluster included 16 hamlets and 17 cases in 19,659 population with a RR of 4.8(p<0.001). High-risk clusters still need to be screened door-to-door. Conclusions We found a high yield of active household contact screening. Our tools for identifying high-incidence hamlets appear effective. Focusing labour-intensive interventions such as door-to-door screening on such hamlets could increase efficiency.

Funder

Action Damien

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference25 articles.

1. Undersøgelser Angående Spedalskhedens Årsager (Investigations concerning the etiology of leprosy in Norwegian).;GHA Hansen;Norsk Mag Laegervidenskaben.,1874

2. Stigma in leprosy: concepts, causes and determinants.;S Sermrittirong;Leprosy review.,2014

3. World Health Organization. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives Geneva: Weekly epidemiological record 2020 [cited 2020 September]. Available from: https://apps.who.int/iris/bitstream/handle/10665/334140/WER9536-eng-fre.pdf.

4. Number of people requiring post-exposure prophylaxis to end leprosy: A modeling study.;AT Taal;PLoS neglected tropical diseases.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3