The role of voltage-gated sodium channel genotypes in pyrethroid resistance in Aedes aegypti in Taiwan

Author:

Chung Han-Hsuan,Tsai Cheng-Hui,Teng Hwa-JenORCID,Tsai Kun-Hsien

Abstract

Background Aedes aegypti is the major vector of dengue that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but the repeated usage of the same insecticides leads to resistance and hampers control efforts. Therefore, efficient and prompt monitoring of insecticide resistance in local mosquito populations is critical for dengue control. Methodology/Principal finding We collected Ae. aegypti in southern Taiwan in March and October 2016. We analyzed the voltage-gated sodium channel (vgsc) genotypes of parentals (G0) and G1 adults after cypermethrin insecticide bioassay. Our results showed that four VGSC mutations (S989P, V1016G, F1534C, and D1763Y) associated with resistance were commonly detected in field-collected Ae. aegypti. The frequencies of these four mutations in the local mosquito population were significantly higher in October (0.29, 0.4, 0.27 and 0.11) than in March (0.09, 0.16, 0.18 and 0.03). Specific vgsc combined genotypes composed of the one to four such mutations (SGFY/SGFY, SVCD/SVCD, SGFY/PGFD, SVCD/SGFY, PGFD/PGFD, and SVCD/PGFD) shifted towards higher frequencies in October, implying their resistance role. In addition, the cypermethrin exposure bioassay data supported the field observations. Moreover, our study observed an association between the resistance level and the proportion of resistance genotypes in the population. Conclusions/Significance This is the first study to demonstrate the role of four-locus vgsc genotypes in resistance evaluation in a local Ae. aegypti population in Taiwan. This alternative method using resistance-associated genotypes as an indicator of practically insecticide resistance monitoring is a useful tool for providing precise and real-time information for decision makers.

Funder

Centers for Disease Control, Taiwan

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference52 articles.

1. The global distribution and burden of dengue;S Bhatt;Nature,2013

2. Refining the global spatial limits of dengue virus transmission by evidence-based consensus.;OJ Brady;PLoS Negl Trop Dis,2012

3. The study of dengue vector distribution in Taiwan from 2009 to 2011.;C Lin;Epidemiology Bulletin.,2014

4. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2011–2016.;CF Yang;PLoS neglected tropical diseases.,2018

5. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits.;LB Carrington;PLoS One.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3