Human coronavirus NL63 nsp1 induces degradation of RNA polymerase II to inhibit host protein synthesis

Author:

Hardy Kala,Lutz Michael,Takimoto ToruORCID

Abstract

Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and β-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two β-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.

Funder

NIH

Interim Funding Program of University of Rochester Medical Center

Publisher

Public Library of Science (PLoS)

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3