Abstract
Clubroot, caused by Plasmodiophora brassicae, is a severe soil-borne disease that restricts the production of cruciferous crops worldwide. A better understanding of biotic and abiotic factors regulating germination of P. brassicae resting spores in the soil is significant for developing novel control methods. Previous studies reported that root exudates can trigger P. brassicae resting spore germination, thus enabling a targeted attack of P. brassicae on host plant roots. However, we found that native root exudates collected under sterile conditions from host or non-host plants cannot stimulate the germination of sterile spores, indicating that root exudates may not be direct stimulation factors. Instead, our studies demonstrate that soil bacteria are essential for triggering germination. Through 16s rRNA amplicon sequencing analysis, we found that certain carbon sources and nitrate can reshape the initial microbial community to an inducing community leading to the germination of P. brassicae resting spores. The stimulating communities significantly differed in composition and abundance of bacterial taxa compared to the non-stimulating ones. Several enriched bacterial taxa in stimulating community were significantly correlated with spore germination rates and may be involved as stimulation factors. Based on our findings, a multi-factorial ‘pathobiome’ model comprising abiotic and biotic factors is proposed to represent the putative plant-microbiome-pathogen interactions associated with breaking spore dormancy of P. brassicae in soil. This study presents novel views on P. brassicae pathogenicity and lays the foundation for novel sustainable control strategies of clubroot.
Funder
China Scholarship Council
Georg-August-Universität Göttingen Department of Crop Sciences
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献