Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding

Author:

Elmasri Zeinab,Negi Vashi,Kuhn Richard J.,Jose JoyceORCID

Abstract

Many viruses encode ion channel proteins that oligomerize to form hydrophilic pores in membranes of virus-infected cells and the viral membrane in some enveloped viruses. Alphavirus 6K, human immunodeficiency virus type 1 Vpu (HIV-Vpu), influenza A virus M2 (IAV-M2), and hepatitis C virus P7 (HCV-P7) are transmembrane ion channel proteins that play essential roles in virus assembly, budding, and entry. While the oligomeric structures and mechanisms of ion channel activity are well-established for M2 and P7, these remain unknown for 6K. Here we investigated the functional role of the ion channel activity of 6K in alphavirus assembly by utilizing a series of Sindbis virus (SINV) ion channel chimeras expressing the ion channel helix from Vpu or M2 or substituting the entire 6K protein with full-length P7, in cis. We demonstrate that the Vpu helix efficiently complements 6K, whereas M2 and P7 are less efficient. Our results indicate that while SINV is primarily insensitive to the M2 ion channel inhibitor amantadine, the Vpu inhibitor 5-N, N-Hexamethylene amiloride (HMA), significantly reduces SINV release, suggesting that the ion channel activity of 6K similar to Vpu, promotes virus budding. Using live-cell imaging of SINV with a miniSOG-tagged 6K and mCherry-tagged E2, we further demonstrate that 6K and E2 colocalize with the Golgi apparatus in the secretory pathway. To contextualize the localization of 6K in the Golgi, we analyzed cells infected with SINV and SINV-ion channel chimeras using transmission electron microscopy. Our results provide evidence for the first time for the functional role of 6K in type II cytopathic vacuoles (CPV-II) formation. We demonstrate that in the absence of 6K, CPV-II, which originates from the Golgi apparatus, is not detected in infected cells, with a concomitant reduction in the glycoprotein transport to the plasma membrane. Substituting a functional ion channel, M2 or Vpu localizing to Golgi, restores CPV-II production, whereas P7, retained in the ER, is inadequate to induce CPV-II formation. Altogether our results indicate that ion channel activity of 6K is required for the formation of CPV-II from the Golgi apparatus, promoting glycoprotein spike transport to the plasma membrane and efficient virus budding.

Funder

National Institute of General Medical Sciences

The Pennsylvania State University

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3