Targeted mutagenesis in Anaplasma marginale to define virulence and vaccine development against bovine anaplasmosis

Author:

Hove Paidashe,Madesh Swetha,Nair Arathy,Jaworski Deborah,Liu Huitao,Ferm Jonathan,Kleinhenz Michael D.,Highland Margaret A.,Curtis Andrew K.,Coetzee Johann F.,Noh Susan M.,Wang Ying,Genda Dominica,Ganta Roman R.ORCID

Abstract

Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26–31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.

Funder

National Institute of Allergy and Infectious Diseases

Russell L. Rustici Rangeland and Cattle Research Endowment, UC Davis, CA

Livestock Memorial Research Fund, California Cattlemen’s Association

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3