Abstract
Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future.
Funder
National Institutes of Health
Hepatitis B Foundation and appropriation from the Commonwealth of Pennsylvania
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Reference71 articles.
1. Risk of yellow fever virus transmission in the Asia-Pacific region.;LG Lataillade;Nat Commun,2020
2. Vaccination and Therapeutics: Responding to the Changing Epidemiology of Yellow Fever.;AM Bifani;Curr Treat Options Infect Dis,2020
3. Yellow Fever-More a Policy and Planning Problem than a Biological One;CH Calisher;Emerg Infect Dis,2016
4. Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus.;RDV Kleinert;Viruses,2019
5. Predictors of mortality in patients with yellow fever: an observational cohort study;D Kallas EG;Lancet Infect Dis,2019
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献