S-Nitrosylation of the virulence regulator AphB promotes Vibrio cholerae pathogenesis

Author:

Chen Jiandong,Byun Hyuntae,She Qianxuan,Liu Zhi,Ruggeberg Karl-Gustav,Pu Qinqin,Jung I-Ji,Zhu Dehao,Brockett Mary R.,Hsiao Ansel,Zhu JunORCID

Abstract

Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. To colonize mammalian hosts, this pathogen must defend against host-derived toxic compounds, such as nitric oxide (NO) and NO-derived reactive nitrogen species (RNS). RNS can covalently add an NO group to a reactive cysteine thiol on target proteins, a process called protein S-nitrosylation, which may affect bacterial stress responses. To better understand how V. cholerae regulates nitrosative stress responses, we profiled V. cholerae protein S-nitrosylation during RNS exposure. We identified an S-nitrosylation of cysteine 235 of AphB, a LysR-family transcription regulator that activates the expression of tcpP, which activates downstream virulence genes. Previous studies show that AphB C235 is sensitive to O2 and reactive oxygen species (ROS). Under microaerobic conditions, AphB formed dimer and directly repressed transcription of hmpA, encoding a flavohemoglobin that is important for NO resistance of V. cholerae. We found that tight regulation of hmpA by AphB under low nitrosative stress was important for V. cholerae optimal growth. In the presence of NO, S-nitrosylation of AphB abolished AphB activity, therefore relieved hmpA expression. Indeed, non-modifiable aphBC235S mutants were sensitive to RNS in vitro and drastically reduced colonization of the RNS-rich mouse small intestine. Finally, AphB S-nitrosylation also decreased virulence gene expression via debilitation of tcpP activation, and this regulation was also important for V. cholerae RNS resistance in vitro and in the gut. These results suggest that the modulation of the activity of virulence gene activator AphB via NO-dependent protein S-nitrosylation is critical for V. cholerae RNS resistance and colonization.

Funder

National Institute of Allergy and Infectious Diseases

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3