Abstract
The innate immune system is the first line of the host’s defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication. Vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection induced a higher level of IFN-β protein in NOG1 deficient mice. Meanwhile, NOG1-deficient mice were more resistant to VSV and HSV-1 infection. NOG1 inhibited type I IFN production by targeting IRF3. NOG1 was also found to interact with phosphorylated IFN regulatory factor 3 (IRF3) to impair its DNA binding activity, thereby downregulating the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). The GTP binding domain of NOG1 is responsible for this process. In conclusion, our study reveals an underlying mechanism of how NOG1 negatively regulates IFN-β by targeting IRF3, which uncovers a novel role of NOG1 in host innate immunity.
Funder
the grants from the national key R&D program of China
national natural sciences foundation of china
national natural sciences foundation of China
national natuial sciences foundation of China
the key technologies R&D program of Gansu province
the open competition program of top ten critical priorities of agricultural science and technology innovation for the 14th five-year plan of Guangdong province
the project of national center of technology innovation for pigs
the earmarked fund
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献