Flavivirus genome recoding by codon optimisation confers genetically stable in vivo attenuation in both mice and mosquitoes

Author:

Chin Wei-Xin,Kong Hao Yuin,Zhu Isabelle Xin Yu,Teo Zi Yun,Faruk Regina,Lee Regina Ching Hua,Ho Si Xian,Aw Zhen Qin,Yi Bowen,Hou Xin Jun,Tan Antson Kiat Yee,Yogarajah Thinesshwary,Huber Roland G.,Cai Yu,Wan Yue,Chu Justin Jang HannORCID

Abstract

Virus genome recoding is an attenuation method that confers genetically stable attenuation by rewriting a virus genome with numerous silent mutations. Prior flavivirus genome recoding attempts utilised codon deoptimisation approaches. However, these codon deoptimisation approaches act in a species dependent manner and were unable to confer flavivirus attenuation in mosquito cells or in mosquito animal models. To overcome these limitations, we performed flavivirus genome recoding using the contrary approach of codon optimisation. The genomes of flaviviruses such as dengue virus type 2 (DENV2) and Zika virus (ZIKV) contain functional RNA elements that regulate viral replication. We hypothesised that flavivirus genome recoding by codon optimisation would introduce silent mutations that disrupt these RNA elements, leading to decreased replication efficiency and attenuation. We chose DENV2 and ZIKV as representative flaviviruses and recoded them by codon optimising their genomes for human expression. Our study confirms that this recoding approach of codon optimisation does translate into reduced replication efficiency in mammalian, human, and mosquito cells as well as in vivo attenuation in both mice and mosquitoes. In silico modelling and RNA SHAPE analysis confirmed that DENV2 recoding resulted in the extensive disruption of genomic structural elements. Serial passaging of recoded DENV2 resulted in the emergence of rescue or adaptation mutations, but no reversion mutations. These rescue mutations were unable to rescue the delayed replication kinetics and in vivo attenuation of recoded DENV2, demonstrating that recoding confers genetically stable attenuation. Therefore, our recoding approach is a reliable attenuation method with potential applications for developing flavivirus vaccines.

Funder

Ministry of Education - Singapore

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3