G-quadruplex in the TMV Genome Regulates Viral Proliferation and Acts as Antiviral Target of Photodynamic Therapy

Author:

Xie Congbao,Zhang Xianpeng,Pei Wenyue,Sun Ju,Shang Hongqi,Huang Zhiyuan,Wang Mengxi,Wang Daozhong,Wang Guiqian,Gui Zhikun,Liu Sisi,Li Feng,Wei DengguoORCID

Abstract

Plant viruses seriously disrupt crop growth and development, and classic protein-targeted antiviral drugs could not provide complete protection against them. It is urgent to develop antiviral compounds with novel targets. Photodynamic therapy shows potential in controlling agricultural pests, but nonselective damage from reactive oxygen species (ROS) unexpectedly affects healthy tissues. A G-quadruplex (G4)-forming sequence in the tobacco mosaic virus (TMV) genome was identified to interfere the RNA replication in vitro, and affect the proliferation of TMV in tobacco. N-methyl mesoporphyrin IX stabilizing the G4 structure exhibited inhibition against viral proliferation, which was comparable to the inhibition effect of ribavirin. This indicated that G4 could work as an antiviral target. The large conjugate planes shared by G4 ligands and photosensitizers (PSs) remind us that the PSs could work as antiviral agents by targeting G4 in the genome of TMV. Chlorin e6 (Ce6) was identified to stabilize the G4 structure in the dark and selectively cleave the G4 sequence by producing ROS upon LED-light irradiation, leading to 92.2% inhibition against TMV in vivo, which is higher than that of commercial ningnanmycin. The inhibition of Ce6 was lost against the mutant variants lacking the G4-forming sequence. These findings indicated that the G-quadruplex in the TMV genome worked as an important structural element regulating viral proliferation, and could act as the antiviral target of photodynamic therapy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

HZAU-AGIS Cooperation Fund

Natural Science Foundation of Hubei Province

Funding from State Key Laboratory of Agricultural Microbiology

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3