Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei

Author:

Toh Justin Y.,Nkouawa Agathe,Dong Gang,Kolev Nikolay G.,Tschudi ChristianORCID

Abstract

Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as “ANACAU” and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells.

Funder

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3