Merkel cell polyomavirus protein ALTO modulates TBK1 activity to support persistent infection

Author:

Wang Ranran,Senay Taylor E.,Luo Tiana T.,Liu Wei,Regan James M.,Salisbury Nicholas J. H.,Galloway Denise A.ORCID,You JianxinORCID

Abstract

While Merkel cell polyomavirus (MCPyV or MCV) is an abundant virus frequently shed from healthy skin, it is one of the most lethal tumor viruses in immunocompromised individuals, highlighting the crucial role of host immunity in controlling MCPyV oncogenic potential. Despite its prevalence, very little is known about how MCPyV interfaces with the host immune response to maintain asymptomatic persistent infection and how inadequate control of MCPyV infection triggers MCC tumorigenesis. In this study, we discovered that the MCPyV protein, known as the Alternative Large Tumor Open Reading Frame (ALTO), also referred to as middle T, effectively primes and activates the STING signaling pathway. It recruits Src kinase into the complex of STING downstream kinase TBK1 to trigger its autophosphorylation, which ultimately activates the subsequent antiviral immune response. Combining single-cell analysis with both loss- and gain-of-function studies of MCPyV infection, we demonstrated that the activity of ALTO leads to a decrease in MCPyV replication. Thus, we have identified ALTO as a crucial viral factor that modulates the STING-TBK1 pathway, creating a negative feedback loop that limits viral infection and maintains a delicate balance with the host immune system. Our study reveals a novel mechanism by which a tumorigenic virus-encoded protein can link Src function in cell proliferation to the activation of innate immune signaling, thereby controlling viral spread, and sustaining persistent infection. Our previous findings suggest that STING also functions as a tumor suppressor in MCPyV-driven oncogenesis. This research provides a foundation for investigating how disruptions in the finely tuned virus-host balance, maintained by STING, could alter the fate of MCPyV infection, potentially encouraging malignancy.

Funder

National Institutes of Health

National Cancer Institute

Publisher

Public Library of Science (PLoS)

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3