Regulation of EBNA1 protein stability and DNA replication activity by PLOD1 lysine hydroxylase

Author:

Dheekollu Jayaraju,Wiedmer Andreas,Soldan Samantha S.,Castro- Muñoz Leonardo Josué,Chen Christopher,Tang Hsin-Yao,Speicher David W.,Lieberman Paul M.ORCID

Abstract

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2’ dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.

Funder

National Institute of Dental and Craniofacial Research

NIH

NCI

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference42 articles.

1. The Global Landscape of EBV-Associated Tumors;C Shannon-Lowe;Front Oncol,2019

2. EBV Persistence—Introducing the Virus;DA Thorley-Lawson;Curr Top Microbiol Immunol,2015

3. Epstein-Barr virus: more than 50 years old and still providing surprises;LS Young;Nat Rev Cancer,2016

4. Cancers associated with human gammaherpesviruses;KW Wen;FEBS J,2021

5. Epstein-Barr Virus and Cancer;PJ Farrell;Annu Rev Pathol,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3