Complete functional analysis of type IV pilus components of a reemergent plant pathogen reveals neofunctionalization of paralog genes

Author:

Merfa Marcus V.,Zhu Xinyu,Shantharaj Deepak,Gomez Laura M.,Naranjo Eber,Potnis Neha,Cobine Paul A.,De La Fuente LeonardoORCID

Abstract

Type IV pilus (TFP) is a multifunctional bacterial structure involved in twitching motility, adhesion, biofilm formation, as well as natural competence. Here, by site-directed mutagenesis and functional analysis, we determined the phenotype conferred by each of the 38 genes known to be required for TFP biosynthesis and regulation in the reemergent plant pathogenic fastidious prokaryote Xylella fastidiosa. This pathogen infects > 650 plant species and causes devastating diseases worldwide in olives, grapes, blueberries, and almonds, among others. This xylem-limited, insect-transmitted pathogen lives constantly under flow conditions and therefore is highly dependent on TFP for host colonization. In addition, TFP-mediated natural transformation is a process that impacts genomic diversity and environmental fitness. Phenotypic characterization of the mutants showed that ten genes were essential for both movement and natural competence. Interestingly, seven sets of paralogs exist, and mutations showed opposing phenotypes, indicating evolutionary neofunctionalization of subunits within TFP. The minor pilin FimT3 was the only protein exclusively required for natural competence. By combining approaches of molecular microbiology, structural biology, and biochemistry, we determined that the minor pilin FimT3 (but not the other two FimT paralogs) is the DNA receptor in TFP of X. fastidiosa and constitutes an example of neofunctionalization. FimT3 is conserved among X. fastidiosa strains and binds DNA non-specifically via an electropositive surface identified by homolog modeling. This protein surface includes two arginine residues that were exchanged with alanine and shown to be involved in DNA binding. Among plant pathogens, fimT3 was found in ~ 10% of the available genomes of the plant associated Xanthomonadaceae family, which are yet to be assessed for natural competence (besides X. fastidiosa). Overall, we highlight here the complex regulation of TFP in X. fastidiosa, providing a blueprint to understand TFP in other bacteria living under flow conditions.

Funder

Auburn University

Alabama Agricultural Experiment Station

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3